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Suppression of the rate of growth of dynamic heterogeneities and its relation
to the local structure in a supercooled polydisperse liquid
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The relationship between the microscopic arrangement of molecules in a supercooled liquid and its slow
dynamics at low temperature near glass transition is studied by molecular dynamics simulations. A Lennard-
Jones liquid with polydispersity in size and mass of constituent particles is chosen as the model system. Our
studies reveal that the local structure (that varies with polydispersity) plays a crucial role both in the slowing
down of dynamics and in the growth of the dynamic heterogeneities, besides determining the glass forming
ability of the system. Increasing polydispersity at fixed volume fraction is found to suppress the rate of growth
of dynamic correlations, as detected by the growth in the peak of the nonlinear density response function, y,(z).
The growth in dynamical correlation is manifested in a stronger than usual breakdown of Stokes-Einstein
relation at lower polydispersity at low temperatures and also leads to a decrease in the fragility of the system
with polydispersity. We show that the suppression of the rate of growth of the dynamic heterogeneity can be
attributed to the loss of structural correlations (as measured by the structure factor and the local bond orien-
tational order) with polydispersity. While a critical polydispersity is required to avoid crystallization, we find

that a further increase in polydispersity lowers the glass forming ability.
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I. INTRODUCTION

The relation between the local structure and its slow dy-
namics in a supercooled liquid near glass transition tempera-
ture, T, is currently a subject of intense curiosity. The most
distinctive feature of glass formation is the rapid increase of
viscosity with a decrease in temperature. The temperature at
which the viscosity becomes 10'* Poise is defined as the
glass transition temperature. One of the main difficulties in
understanding the glass transition phenomenon is that this
enormous slowing down of dynamics is apparently not ac-
companied by a growing static correlation length (unlike the
usual critical phenomena). Static structural quantities do not
reveal any long-range correlation. In fact, the static structure
of the liquid near glass transition is not much different from
its equilibrium high-temperature counterpart.

In the Adam-Gibbs picture [1], the sharp slowing down is
related to the growth of a cooperative dynamic length scale.
In a separate theoretical study, the size of heterogeneous re-
configuring regions in a viscous liquid was inferred via the
random first-order transition theory (RFOT) [2]. There is
now increasing evidence from both experiments and simula-
tions of a dynamic correlation length that grows upon ap-
proaching the glass transition [3—5]. Multipoint susceptibili-
ties have been devised to quantify the behavior and
magnitude of growing dynamic length scales and have been
used in the experimental studies for several materials [4].
These have directly determined the number of molecular
units that move cooperatively near glass transition. The sim-
plest density correlation function that contains information
on correlated motion is the fourth order [6,7]. The four-point
time-dependent density correlation function g4(r,7) measures
the spatial correlations between the local liquid density at
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two points in space, each at two different times. The dynami-
cal four-point susceptibility, x4(z) [the volume integral of
g4(r,1)], becomes increasingly pronounced as glass transition
is approached.

In this study, we look for a possible relationship between
the structure and the slowdown of dynamics in supercooled
polydisperse liquids near glass transition. In particular, we
look at how the local structure (which we characterize using
structure factor and bond orientational order parameters)
would influence the growth of dynamic heterogeneity and
the glass forming ability of the system. Polydisperse liquids
are one of the simplest model systems that exhibit glass tran-
sition and can be conveniently studied via both experiments
[8,9] and computer simulations [10,11] as the size distribu-
tion of particles prevents crystallization. It also serves as a
model for colloids and many other real world systems such
as polymers, pigments, paints, etc., as polydispersity is in-
herent in all these systems. Polydispersity introduces a dis-
tribution of particle diameters and masses and thus makes the
system intrinsically more heterogeneous. However, the effect
of polydispersity on dynamic heterogeneity has not yet been
examined in detail. Here we probe this in detail using the
dynamical four-point susceptibility, y.(¢). Increasing poly-
dispersity results in the loss of structural order. Thus by vary-
ing polydispersity, one can understand the effect of loss of
structure on the growth of dynamic heterogeneities. Our
studies [11] have shown that increasing polydispersity at
fixed volume fraction decreases the fragility, hence this study
also presents us with an opportunity to probe the growth of
four-point susceptibility (and thus dynamic heterogeneity) in
systems with varying degrees of fragility.

The rest of the paper is organized as follows. In Sec. II,
we describe the model and simulation details and also define
various quantities that are used in the analysis. In Sec. III, we
present our results and give detailed discussions on the same.
We give our concluding remarks in Sec. I'V.
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II. THEORY AND COMPUTATIONAL METHODS
A. Four-point susceptibility

The two-point, two-time, fourth-order density correlation
function [6,7,12] is defined as

g4(;l’;2’t) = <P(FI’O)P(;IJ)P(;z’o)ﬂ(;z’t» - <P(;I,O)P(’71J)>
X(P(;st)P(Fz’l» (1)

The volume integral of g4(r;,r,,t) gives the four-point sus-
ceptibility x4(z),

Vv I R N
X4(t)=%ffdrldrzp(rl,O)p(rz,t)g4(r1,rz,t). (2)

It has been shown that x,(¢) can be written as [7]
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Here B:kTT and Q(r) is a time-dependent order parameter

and is given by

00 = f f 4 dip(r,0)p(Fa (7 )
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w(r) is the overlap function that is unity inside a region of
size a and zero otherwise, where a is taken on the order of
particle diameter. In our studies, we choose a=0.40 for all
the systems with different polydispersity. Q(r) measures the
number of particles that in a time ¢ has either remained
within a distance a of their original position (when i=j) or
were replaced by another particle (when i # j). We can sepa-
rate Q into self- and distinct parts, Q(r)=Qg(t)+Qp(r). The
self-part corresponds to terms with i=j, Q,(f)=3w[|r,(0)
—r{#)|]. The distinct part is given by Qp(1)=2Z,. w[|r,(0)
—r{t)|]. The susceptibility x,(r) can then be decomposed
into self-, distinct, and cross terms [7],

Xa(0) = X5(0) + X5 (0 + ;P (0), (5)
where,
Xi(0) < (Q3(1)) = (Qs(1)%. (6)
X2 (1) % (Qp(0) = (Qp(0))?, (7)
and

Xi” (1) = {Qs(0)Qp(1) = (Qs())XQp(1)). (8)

As has been found in previous studies [7], we find that for
our model system also the major contribution to y4(z) comes
from x3(7), hence in this paper we have presented results

only for x;(1).

B. Bond-orientational order

The average microscopic structure of liquids is usually
described by the radial distribution function or the structure
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factor, which essentially measures only the density-density
correlation function. However, bond-orientational order pa-
rameters (BOP) introduced by Steinhardt et al. [13-15] give
a better quantification of the local structure as they capture
the symmetry of bond orientations. BOP are described in
terms of combinations of spherical harmonic functions. Con-
sider a system of N particles. First, one defines a set of
“bonds” which are defined as the vectors connecting neigh-
boring particles. All particles j within a cutoff distance 7, of
particle i are defined as neighbors of particle i. Here r is
chosen to be equal to the distance to the first minimum of the
radial distribution function (RDF). The local order param-
eters associated with a bond r are the set of numbers

le(r) = Ylm(a(r)a ¢(r)), (9)

where 6(r) and ¢(r) are the polar and azimuthal angles of the
bond with respect to an arbitrary but fixed reference frame,
and Y,,,(6(r), ¢(r)) are the spherical harmonic functions. It is
useful to consider only the even-/ spherical harmonics, which
are invariant under inversion. Global bond-order parameters
can be calculated by averaging over all the bonds in the
system,

0=~ 0@ (10)

N bbonds

Since Q,,’s for a given [ depend on the rotations of the
reference frame, it is important to consider the rotationally
invariant combinations such as

4o l 12
— N |2
Ql_ <2l+ 1% |le| ) (11)

and

my+my+m3=0

W= X

my,my,ms

(' : ')élmlélmzélm3' (12)

Q; and W, are the second- and third-order invariants, respec-
tively. The coefficients (- - ) are Wigner 3 symbols. One also
defines a normalized quantity,

. W,

which for a given / is independent of the magnitudes of the

(13)

0O;,,- The four bond-order parameters Qy4, Qg, W4, and W6 are
sufficient to identify different crystal structures. The typical
values of these for different crystal structures are given in
[15]. For a liquid, the global values of all these four quanti-
ties are zero as there is no long-range order. Note that in
clusters with cubic symmetry, nonzero averages occur only
for [=4 whereas nonzero averages occur only at /=6 and 10
for icosahedral cluster.

C. System and simulation details

Microcanonical (NVE) ensemble molecular dynamics
(MD) simulations are carried out in three dimensions on a
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FIG. 1. (Color online) The time dependence of the four-point
susceptibility [ﬁ(z)] at four different temperatures and at two dif-
ferent polydispersity, $=0.10 (thick lines) and $=0.20 (dashed
lines). From the bottom to the top, temperature decreases. )(i(t)
grows for both systems as 7 decreases, but there is a more pro-
nounced growth at lower polydispersity.

system of N=864 particles of mean diameter ¢ with polydis-
persity in both size and mass. The polydispersity in size is
introduced by random sampling from the Gaussian distribu-
tion of particle diameters o,

1 1{o-7)\*
T exp|—-Z|—— . (14)

The standard deviation & of the distribution divided by its
mean o gives a dimensionless parameter, the polydispersity
index S= g. The mass m; of particle i is scaled by its diameter

mi=n_1(%)3. We have chosen 71=1.0. The simulations are car-
ried out at different values of the polydispersity index, S, but
at fixed volume fraction, ¢=0.52. The interactions between
the particles are given by the shifted-force Lennard-Jones
(LJ) 12-6 potential,

S\ 12 \6
U,.,=4e,.j[(ﬂt> -(ﬂ) } (15)
rl'j rij

gt

where i and j represent any two particles and o;;=(=5").
The LJ interaction parameter ¢; is assumed to be the same
for all particle pairs and set equal to unity. The particles are
enclosed in a cubic box and periodic boundary conditions are
used. The cutoff radius r, is chosen to be 2.55. A time step of
0.001 is employed for 7=1.0 and 0.002 for T<<1.0. All
quantities in this study are given in reduced units [length in
units (2f o, temperature in units of k—;, and time in units of
r=("5)17),
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FIG. 2. (Color online) (a) The value of the peak height of x3(r)
is plotted as a function of T for $§=0.10 (filled circle), S=0.15 (star),
and §=0.20 (filled triangle) systems. The figure shows the suppres-
sion of the rate of growth of dynamic heterogeneity with S. (b) The
time at which xj(r) peaks, r*, is plotted as a function of T for §
=0.10 (S1) and $=0.20 (S2) systems (filled circles and triangles,
respectively). t* is similar to the a-relaxation time (open circles and
triangles, respectively). The latter is obtained by doing KWW fit to
Fy(kmax,1) Where kg, corresponds to the first peak in the static
structure factor.

III. RESULTS AND DISCUSSION

The main objective of our study is to demonstrate the
effect of polydispersity and hence of the local structure on
the growth of dynamic heterogeneities. By varying polydis-
persity, we can “tune” the local structure and hence study its
effects on the dynamic heterogeneity. As polydispersity is
increased, the local structure is progressively destroyed.
Hence the blocking of the particles in the cages of the neigh-
boring particles (as required for the mode-coupling theory of
dynamic transition [17]) becomes ineffective at higher poly-
dispersity. We find that this has a pronounced effect on the
development of dynamic heterogeneities as well. In this sec-
tion, we systemically present our results and show that the
local structure plays a very important role in determining the
dynamics in supercooled liquids near glass transition.

A. Suppression of the rate of growth of dynamic correlations
by polydispersity

The four-point susceptibility x;(¢) obtained from Eq. (3)
is shown in Fig. 1 for $§=0.10 and 0.20 for a few tempera-
tures. From Egs. (1) and (2), we see that y,(r) becomes larger
when the dynamic fluctuations become increasingly spatially
correlated. Since y,(7) is the volume integral of the four-
point correlator g4(r,7), it is directly related to the number of
correlated particles. As temperature is lowered, xj(r) grows
for both systems but the rate of growth decreases with poly-
dispersity. This is more clearly seen in Fig. 2(a), where the
peak height of )(i(t) [which we label as )(j(t*)] is plotted
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FIG. 3. (Color online) (a) xj(*) as a function of the distance
from the MCT critical temperature 7. for §=0.10 and 0.20 systems.
T. values are 0.42 and 0.39 for S=0.10 and 0.20 systems, respec-
tively. (b) a-relaxation time, 7,, as a function of the distance from
T,

cr

against temperature for different values of polydispersity.
Figure 2(a) shows the suppression of the rate of growth of
dynamical heterogeneity by polydispersity. In Fig. 3(a), we
plot the peak height x3(¢*) as a function of the distance from
the mode-coupling theory (MCT) critical temperature 7, for
the $=0.10 and 0.20 systems. The rescaled plot also shows a
suppression in the rate of growth of )(i(t*) for the §=0.20
system as compared to the §=0.10 system. By fitting to the

expression )(4(t*)~(—)7x we get the values of the expo-
nent y, as 1.507 and 1.188 for §=0.10 and 0.20 systems,
respectively. The exponent vy, thus seems to change with
polydispersity. The suppression of the rate of growth of dy-
namical heterogeneity by polydispersity leads to the dynamic
crossovers observed in the values of the stretch exponent, 3,
and the non-Gaussian parameter, a,(t), between S=0.10 and
0.20 systems as shown earlier [11] and the crossover behav-
ior seen in the exponent z,, that quantifies the deviation from
the prediction of the Stokes-Einstein relation (see Sec. III B).
Increasing polydispersity at fixed volume fraction decreases
the fragility of the system (see Fig. 4). Fragility measures the
rapidity with which the system approaches glass transition.
Hence a decrease in the rate of growth of dynamic heteroge-
neity with polydispersity is consistent with the decrease in
the fragility. This is further explained in Sec. III C.

In Fig. 2(b), we show the time at which Xi(t) peaks, ¥,
versus temperature for S=0.10 and 0.20. Also shown are the
a-relaxation times, 7, obtained by doing a Kohlrausch-
William-Watts (KWW) fit to the self-part of intermediate
scattering function, F(k,). The plot shows that the dynam-
ics is maximally correlated on time scales of the order of the
a-relaxation time. In Fig. 3(b), 7, is plotted as a function of
the distance from the MCT critical temperature, T,. The res-
caled plot shows that the rate of growth of 7, decreases with
polydispersity.
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FIG. 4. (Color online) Angell-like fragility plot at different S.
The thick lines are VFT fit to the diffusivity data, D
=D, exp(T T) The reference temperature T, is chosen such that
D(T,)=4.5X107°. The VFT extrapolation is used to locate 7,. The
plot shows that fragility decreases with S. Strength parameter m
(where m= [16]) obtained from VFT fit has the values 7.78, 8.54,
and 15.94 for §=0.10, 0.15, and 0.20 systems, respectively.

B. Breakdown of Stokes-Einstein relation

In this section, we discuss the breakdown of the Stokes-
Einstein (SE) relation and its connection to the rate of
growth of dynamic heterogeneity in the system as tempera-
ture is lowered. The SE relation is based on treating the
liquid as a continuum, and is given by

kT
"~ Cyo’

(16)

Here C is a constant that depends on the boundary conditions
(stick or slip) and 7 is the viscosity. If the Stokes-Einstein
relation is strictly valid, then a plot of In(D;/D;) versus
In(o;/ ;) would be a straight line with unit slope. Here i and
j are indices for solute and solvent, respectively. In Fig. 5,
we show this plot for the §=0.10 and 0.20 systems. Both
systems show deviation from the SE prediction even at high
temperatures due to the intrinsic heterogeneity in the system,
with the deviation being more pronounced for the $=0.20
system. The SE relation has been shown not to be valid for
the diffusion of small solutes in a solvent of bigger particles
[18]. There is an anomalous enhancement of the self-
diffusion over the SE value for small solutes that can be
described by a power law,

bi <5> (17)

Dj ag;

Hence the exponent z,, quantifies the deviation from the SE
relation. It is unity in the SE limit and usually larger than
unity in supercooled liquid. Figure 6 shows that z, deviates
significantly from unity for polydisperse liquids, particularly
at low temperatures. Interestingly, it is larger than unity even
at high temperature because of the heterogeneity in the size
and mass. This deviation of the slope from unity at high
temperature can be a combination of two different effects.
The first one is the mass, which is not present in the SE
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FIG. 5. (Color online) The plot of In(D;/D;) versus In(a;/ o) for
S§=0.10 (circles) and S=0.20 (triangles). Here the subscript i de-
notes the smaller particle. If the SE relation is valid, this plot would
be of unit slope (dashed line). The plot shows that at high tempera-
ture, the deviation from the Stokes-Einstein prediction is higher for
the $=0.20 system, but the scenario reverses at low temperature
where the §=0.10 system shows a stronger deviation due to the
faster growth of dynamic heterogeneity.

relation but has been reported earlier in simulations [19] and
MCT studies [20]. The studies predict a weak power-law
mass dependence of diffusion. The second effect is that of
size, which has also been obtained in experiments and simu-
lations [21] and MCT studies [18]. When the size of one of
the particles is 1.5-15 times smaller than the other, it shows
an anomalous rise in diffusion. This enhanced diffusion has
been explained in terms of the microviscosity effect. The
MCT studies explain the microscopic origin of the size effect

4

35— —

FIG. 6. (Color online) The values of the power-law exponent,
74 Obtained by fitting Eq. (17), are plotted against T for §=0.10 and
0.20 systems. If the SE relation is strictly valid, then z,=1. Devia-
tion from unity shows the breakdown of SE relation. The figure
clearly shows that at high temperatures, intrinsic heterogeneity
causes a larger breakdown in the $=0.20 system, whereas at low
temperatures the faster growth of dynamic heterogeneity leads to a
stronger breakdown in the S=0.10 system.
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in terms of the difference in relaxation time scales of the two
particles, which leads to a decoupling in the dynamics [18].
(Note that for size-dependent studies, the small particle was a
tracer and for mass-dependent studies the heavier particle
was a tracer. In the present study, the systems are intrinsi-
cally heterogeneous.)

As temperature is lowered, the deviation from the predic-
tion of the SE relation becomes more pronounced and one
observes a crossover in the value of z,, between the S=0.10
and 0.20 systems; the values are much higher for the S
=0.10 system than the $§=0.20 system at low temperatures
(see Fig. 6). This again shows that the rate of growth of
dynamic heterogeneity is faster in the S=0.10 system than in
the §=0.20 system. The faster rate of growth of dynamic
correlations leads to similar temperature-dependent cross-
overs between the $=0.10 and 0.20 systems in the values of
the stretch exponent (B) and the non-Gaussian parameter
[a,(2)], both of which contain implicit information on dy-
namic heterogeneity [11]. These studies show that there is a
strong correlation between the growing dynamic heterogene-
ity in the system and the breakdown of the SE relation as the
former renders the continuum description of liquid invalid as
required for the SE relation.

C. Fragility and the growth of dynamic correlations

It has been shown that the dynamics of fragile liquids is
more spatially heterogeneous than that of strong liquids [22].
Increasing polydispersity at fixed volume fraction decreases
the fragility of the system, as shown in Fig. 4. The decrease
of the rate of growth of y,(¢) with polydispersity supports the
previously observed correlation between fragility and dy-
namic heterogeneity. The intrinsic heterogeneity of the sys-
tem (as measured by the distribution of particle masses and
sizes) increases with polydispersity. Hence we have the in-
teresting scenario in which increasing polydispersity leads to
a more homogeneous dynamics even though the system be-
comes completely amorphous at higher values of polydisper-
sity. It has been shown that polydispersity has a pronounced
effect on potential energy surface [23]. As polydispersity is
increased from zero, the characteristics of the potential en-
ergy minima change from that of crystalline to that of amor-
phous. The latter is known to have low curvature and small
barriers along some coordinates [24,25]. This observation is
also consistent from the perspective of the inherent structure
formalism, according to which the potential energy land-
scape of a fragile liquid is very heterogeneous, which in turn
leads to heterogeneous dynamics, whereas the landscape of
strong liquids consist of a single megabasin [26]. Hence
from a potential energy landscape perspective, increasing
polydispersity leads to a smoothening of the landscape that in
turn leads to the facilitation of dynamics as well as a de-
crease of fragility. In Sec. Il D, we try to understand how
polydispersity suppresses the rate of growth of dynamic cor-
relations, and in particular whether the loss of structure upon
increasing polydispersity has any role to play in this.

D. Local structure and the growth of dynamic heterogeneities

We plot the static structure factor, S(k), for §=0.10 and
0.20 systems in Fig. 7. The plot shows that increasing poly-
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FIG. 7. (Color online) The calculated static structure factor,
S(k), is plotted against wave number k for S=0.10 (thick lines) and
S§=0.20 (dashed lines) systems at a few temperatures. Structural
correlation is weaker in the $=0.20 system than in the §=0.10
system and shows no appreciable change with temperature.

dispersity destroys the local structure in the system as the
system becomes more amorphous. The peak height of S(k) is
highly suppressed in the $=0.20 system as compared to the
$=0.10 system and does not show any appreciable growth
upon lowering of 7. Figure 8 shows the peak height value of
RDF, g(ryay), as a function of temperature. At §=0.10, the
peak height shows considerable enhancement upon lowering
of temperature, whereas at §=0.20 there is no remarkable
change in the value of g(r,,,) with temperature.

As mentioned in Sec. II B, the bond orientational order
parameters give a better quantification of the local structural

3

251 o

8(r,,)

15 | | | |

FIG. 8. (Color online) Peak height value of the radial distribu-
tion function, g(rmy,y), When plotted against separation r, is plotted
as a function of T for §=0.10 (circles), S=0.15 (stars), and S
=0.20 (triangles). The $=0.20 system does not show any remark-
able change in the value of g(ry.c) upon lowering of 7. On the other
hand, the §=0.10 system shows a sudden increase of spatial corre-
lations for 7<0.8. Comparison between Figs. 8 and 2(a) shows that
local structure plays a crucial role in the buildup of dynamic
correlations.
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FIG. 9. (Color online) The calculated local values of bond-order
parameter, Qg, are plotted as a function of 7 for §=0.10 (circles),
S§=0.15 (stars), and S=0.20 (triangles). The plot shows that at the
local level, there is significant orientational order that increases with
a decrease in temperature and decreases with polydispersity. (Inset:
Qg as a function of the distance from T..)

arrangement. Frank [27] proposed that atoms might form
icosahedral clusters in liquids since the lowest-energy state
of a 13-atom cluster interacting via Lennard-Jones potential
is an icosahedron (and not fcc). But icosahedra cannot tile
space in three-dimensions due to its fivefold symmetry and
hence do not satisfy the global structural stability criterion.
This geometrical frustration could be an important factor that
contributes to the stability of a glassy state [28]. Steinhardt er
al. [13] have shown that there is a long-range orientational
icosahedral order in supercooled liquids. It has been shown
that the large size disparities at higher values of polydisper-
sity would inhibit any icosahedral cluster formation. How-
ever, since at low or moderate polydispersity the peak height
of g(rmax) sShows a pronounced growth as temperature is low-
ered, one can ask whether this is due to the formation of
icosahedral clusters that grow with a decrease in tempera-
ture.

We look for the local values of BOP in order to under-
stand whether local orientational order plays any role in the
growth of dynamic heterogeneities. The icosahedral order, if
present, would be picked by the BOP corresponding to /=6,
Qe The local values of Qg are plotted in Fig. 9. To get the
local values, the spherical harmonics corresponding to /=6
are summed over the nearest-neighbor bonds only. The figure
shows that there is a pronounced icosahedral orientational
order at the local level. This local icosahedral order shows
considerable enhancement at lower polydispersity as tem-
perature is lowered (for T7<0.80) and also decreases with
polydispersity. In the inset of Fig. 9, we plot Qg as a function
of the distance from the MCT critical temperature 7., which
shows that as temperature is lowered, Qg increases much
more sharply at lower values of S.

In Fig. 10, we plot the global values of Qg for different S
as a function of temperature. The averages over bonds are
evaluated by summing over all bonds lying within a sphere
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FIG. 10. (Color online) The calculated values of the global
bond-order parameter, Qg, are plotted as a function of 7 for §
=0.10 (circles), S=0.15 (stars), and S=0.20 (triangles). The plot
shows that there is no appreciable long-range orientational order
developing in the supercooled state.

of radius 2.4 units. Nine such spheres are considered whose
centers lie at different locations of the simulation box. We
repeat this averaging for several different snapshots obtained
from simulation. It is evident from Fig. 10 that polydispersity
suppresses long-range orientational order. Even at moderate
polydispersity, there is no pronounced growth of long-range
icosahedral order upon supercooling.

Our results indicate that increasing polydispersity de-
stroys both the local structure and the local orientational or-
der. The four-point susceptibility )(i(t) measures the suscep-
tibility arising from the number of localized particles and is a
measure of the dynamic heterogeneity in the system. Thus
the dynamic heterogeneity is associated with the temporary
localization of particles by their neighbors. Since the local
structure is destroyed, at higher values of polydispersity it is
not possible to have such a caging effect. As a consequence,
particle motion gets decorrelated over much shorter time
scales. This is best seen by plotting the van Hove correlation
function (see Figs. 11 and 12). Thus the loss of local struc-
ture due to polydispersity suppresses the growth of dynamic
heterogeneity in the system.

E. Polydispersity and glass forming ability

We find that the present system of LJ particles of varying
size and mass crystallizes when polydispersity is less than
7.5%. Thus, our system with 10% polydispersity can be re-
garded as the system on the lower side of polydispersity that
could be made to avoid crystallization and remain liquid
within our MD simulation time range. Interestingly, we find
that this is also the system that shows glassy behavior at the
highest temperature. When we increase polydispersity be-
yond 10%, we need to lower the temperature to capture the
onset of slow glassy dynamics. This can be seen from Fig.
2(b), which shows that the rate of growth of 7, decreases
with S. The new aspect revealed in the present work is the
correlation between the glass forming ability (GFA) and the
rate of growth of the dynamic heterogeneity—the sharper the
growth, the larger the GFA.
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FIG. 11. (Color online) The calculated van Hove self-correlation
function, G(r,1), plotted against position r at different times (indi-
cated in the figure) for $=0.10 (thick lines) and $=0.20 (dashed
lines) systems at 7=0.45. The figure shows the faster decay of
density correlations for the S=0.20 system as compared to the S
=0.10 system.

Given that a polydisperse liquid with low polydispersity
(§<0.05) crystallizes easily, the loss of local structure at
large S (=0.20) and the concomitant difficulty of glass for-
mation at large S imply a rather narrow range of S for poly-
disperse systems to act as good glass formers. This means
that only at moderate polydispersity does the system have a
high GFA. The GFA decreases with polydispersity beyond a

3
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— £=200.0
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FIG. 12. (Color online) The calculated van Hove distinct-
correlation function, G4(r,t), is plotted against position r for §
=0.10 (upper panel) and S=0.20 (lower panel) systems at T=0.45
depicting the faster decay of interparticle correlations at higher
polydispersity.
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value of S. Further insight can be gained from the study of
inherent structures. We find that the ruggedness of potential
energy landscape decreases with S, which is consistent with
a decrease of the GFA as well as fragility with S. It is im-
portant to note that network glass formers such as silica,
which is a strong liquid in Angells fragile/strong classifica-
tion, exhibits high glass forming ability due to trapping by
defects. This apparently contradicts the decrease of GFA with
polydispersity. The latter appears to be a hallmark of poly-
disperse systems. We shall address these issues in detail else-
where.

IV. CONCLUDING REMARKS

The hypothesis that structure determines dynamics has
been termed by Harowell as the central dogma of glass sci-
ence [29]. This dogma is validated in the mode-coupling
theory. The Adams-Gibbs theory, however, gives greater em-
phasis on the emergence of a dynamical correlation length as
the source of slow dynamics, which does not seem to depend
too sensitively on structure formation. This can be under-
stood from the relative insensitivity of the structure to tem-
perature. In the present work, we have varied polydispersity
that allows for a large variation of the local structure, and we
found that the local structure indeed plays an important role

PHYSICAL REVIEW E 78, 051501 (2008)

in the development of dynamic correlations and the slow
dynamics near glass transition in a supercooled polydisperse
liquid. Increasing polydispersity at constant volume fraction
leads to a suppression of the rate of growth of dynamic het-
erogeneity in the system, which can be attributed to the loss
of local structure with polydispersity. At moderate polydis-
persity, there is a faster growth of structural correlations as
the temperature is lowered, which leads to a corresponding
faster growth of dynamic heterogeneity. At higher polydis-
persity, structural correlations are weak and do not show any
significant change with temperature, and correspondingly,
the rate of growth of dynamic correlations is also less. We
also find that there is a pronounced local icosahedral order
that increases with cooling and decreases with polydispersity.
No significant long-range icosahedral order is found either in
the equilibrium or supercooled liquid.

An important outcome of the present work is the hitherto
unknown correlation between polydispersity and glass form-
ing ability. This correlation deserves further study.
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